
1



Going to cover;
- Why we have SPIR-V

- Brief history of SPIR-V
- Some of the core required features we wanted

- How OpenCL will use SPIR-V
- How Vulkan will use SPIR-V

- The differences between compute/graphics use
- Information on one of the new features – Specialization Constants!

2



SPIR started with SPIR 1.2 (to match OpenCL 1.2) then SPIR 2.0 (to match OpenCL 2.0)

SPIR-V started with Vulkan, we knew we needed a binary shader format, and we were 
investigating what we could use.

Obvious choice was LLVM IR and extending SPIR 1.2/2.0 – but we ruled them up early 
on (more info later)

John Kessenich (@johnkslang on twitter) turned up to the group one day with the 
bones of what would become SPIR-V, huge amount of praise should rightly be sent 
his way for really jumpstarting the whole endeavour.

Originally SPIR-V was intended for Vulkan only – but OpenCL quickly jumped on board 
once they realised the benefit SPIR-V gave them too.

Work work work – crunching to get an initial specification ready for show at GDC’15 –
where we presented the specification and SPIR-V was truly born!

3



Lets cover how we ruled out the alternatives first

4



First off – why not LLVM IR?

The heart of it is that it isn’t a standard – something that doesn’t fit well with 
Khronos’ desire to have cross platform standards for everything to enable easy 
adoption!

There is no desire to make the IR backwards compatible – EG. if we choose LLVM IR 
today (version 3.6 for instance) we can’t guarantee that the latest versions will be 
able to produce/consume the same IR.

The IR is not standardized independently – EG. the code IS the ‘standard’.

Not everyone uses LLVM for drivers. If we choose LLVM IR, we’re basically lumping 
people who don’t use LLVM with around 15Mb of extra executable bloat when they 
don’t necessarily require it.

5



LLVM has this wonderful philosophy of ‘break everything if it is for the better’. If 
something doesn’t work, they change it, end of. This means though that having 
standards, and backwards compatibility are the first thing to go out the window – not 
having to support the older ‘broken’ version is part of the reason why LLVM is such a 
successful project in my opinion.

We love LLVM at Khronos – that’s why it was chosen as the IR for SPIR 1.2/2.0 in the 
first place! It was only through the process of defining and supporting SPIR 1.2/2.0 
that Khronos realised where it just didn’t quite fit with what Khronos needed. We 
didn’t want to burden and slow down LLVM by trying to enforce some standard on 
their IR format, so the logical conclusion was to introduce SPIR-V instead!

6



SPIR 1.2/2.0 was just a standard on-top of older versions of LLVM IR.

This meant that you either had to use the older versions of LLVM for your tools (and 
miss out on all the improvements of tip) or produce older IR from tip LLVM (which I 
have done for customers in the past and it is more painful than you might imagine).

For consuming LLVM IR – it mostly used to work to consume older IR from tip, but 
significant changes to the binary metadata format (something which SPIR 1.2/2.0 
relied on heavily for things missing in LLVM IR) meant that metadata will be scrubbed, 
which meant you had to have old bitcode readers too.

All in all it meant for a more troublesome process than it should have been.

7



Slide transition…

8



Lets talk about how we came up with the SPIR-V name next

9



The name had to be unique, not tied to any other particular API/standard (we want to 
allow more Khronos APIs and other APIs to use SPIR-V after all), and Khronos already 
had done all of the legwork to get the SPIR name in the first place.

It was natural for the Khronos groups to simply reuse the existing name.

Now the catch – we knew this was a new offering that, although was under the SPIR 
Khronos banner, was very different to the previous SPIR offerings.

10



SPIR-V was crafted (much like the One Ring - my precious) in the bowls of a volcano… 
analogy aside it was Vulkan’s inception that bore us this thing we had to name. It 
made sense then to amalgamate SPIR and the V from Vulkan, and thus we have SPIR-
V!

11



Slide transition…

12



Lets talk about the heart of the matter – where we actually defined the IL. I don’t 
have a ton of time here, so I’ve picked out some of the key features the IL needed to 
have.

13



SPIR-V is the first cross vendor, cross API, intermediate language that supports both 
graphics and compute.

Think of all the possibilities this allows the community to innovate with!

14



LLVM LLVM LLVM LLVM LLVM! We didn’t want to use LLVM IR, but we damn well 
wanted to easily support transformations to and from the LLVM IR, and use all the 
awesome optimizations that LLVM has for our own benefit!

15



We also wanted to be able to support other intermediates – why not the HSA 
foundations HSAIL?

16



Or any IL/IR! The door is open to allow SPIR-V to become anything (we’ve tried really 
hard to wedge this door firmly open too)

17



Here is a really simple fragment shader.

18



Here is the SPIR-V generated from the Khronos GLSL -> SPIR-V tool

19



Here is the output from Codeplay’s SPIR-V disassembler.

The tool took my team about 2 days to have initial support, and from then on we are 
just adding features (coloured command line output, validation, statistics, queries, 
etc.)

20



Big feature is that if you don’t understand or care about an opcode, you can skip it. 
Each opcode has a word count imbued within, so you know the lengths of words you 
need to skip even if you don’t understand what you are looking at.

21



I’ve injected this dud opcode 0xabcd, word count 1

22



Our parser finds the opcode, hasn’t a scooby what it is, so just outputs an 
OpUnknown. Notice that the opcodes after that unknown opcode are still parse-able 
because of the word count!

23



We need to support Vulkan and OpenCL (they are using SPIR-V after all).

But we don’t want to be stuck to them! SPIR-V has been designed to let others use it 
if they wish.

SPIR-V is easily extended, so we hope that others will see the benefit of the 
technology and come on-board.

We even have a separate group entirely now within Khronos focused solely on SPIR-V, 
rather than being part of the Vulkan or OpenCL umbrellas.

24



For example, I’ve hacked clang + LLVM to add a SPIR-V target, and a metal C++ 
standard. I then feed in this simple metal kernel that adds two vectors together, and I 
get valid SPIR-V on the right!

This initial support took about 3 days to get in (although I can’t say the code is by any 
stretch pretty or maintainable) but it just shows you how easy it is to support!

25



OpenCL 2.1 has CORE support for SPIR-V – that means every implementation of 
OpenCL 2.1 will support SPIR-V.

There is one entry point for SPIR-V binaries – clCreateProgramWithIL.

This is great news for OpenCL developers (once the drivers hit the market of course).

The group is taking feedback though, this is the time to request things!
- Want vendors on older OpenCL to support a SPIR-V extension? Request it!

26



The Khronos OpenCL group are going to provide OpenCL C++ -> SPIR-V compiler,
which will be the main mechanism for running OpenCL C++ kernels on a compute 
device.

27



I know more about the Vulkan side – it is what I work on after all!

SPIR-V is consumed by Vulkan at the vkCreateShader entry point. This is the same for 
both compute and graphics shaders.

You can find out more about the GLSL -> SPIR-V support here 
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/

28



Pipelines are created for graphics and compute separately though. Graphics pipelines 
can reference multiple shaders (think vertex then fragment shaders in the pipeline) 
whereas compute pipelines can reference one shader.

29



Core part of Vulkan are descriptors and descriptor sets. Graham Sellers already 
covered these in more detail here
https://www.khronos.org/assets/uploads/developers/library/2015-gdc/Khronos-
Vulkan-GDC_Mar15.pdf

How SPIR-V uses descriptor sets is via a pair of decorations, DescriptorSet and 
Binding.

DescriptorSet matches with the descriptor set in the Vulkan API, and Binding is the 
position within that DescriptorSet that a resource is.

In this example we have a compute shader, and we are bringing in a buffer. This buffer 
is in the 0th set, and is bound to the 0th position.

Descriptor sets are awesome because they let you switch out some resources but 
leave others untouched. Very powerful concept.

30



Going to cover a feature another cool feature we added – specialization constants.

Specialization constants are a way to solve ‘At runtime, some values might need to be 
different’. A good example of this might be in the mobile space, you have a low end 
GPU that is incapable of some computation. You could use multiple SPIR-V shaders to 
solve this, or you could use a specialization constant within the SPIR-V that you 
modify at runtime.

I’m showing here the code for workgroup size setting from a GLSL Compute shader -> 
SPIR-V. This is how a GLSL compute shader today would look.

31



Thanks to Qualcomm for allowing me to use this slide;

This slide shows performance of a compute shader when varying the work group size 
in the x/y dimensions on two different mobile GPUs. The crux of the matter is – one 
work group size set at compile time doesn’t cut it for mobile, we needed a way to 
vary the work group size.

Specialization constants can solve this problem for us too!

32



We are using a new mechanism in this GLSL – having a constantId layout specifier. 
The value of this constantId can be anything (user chosen) and is used within Vulkan.

33



Here is the SPIR-V produced, you can the new decoration SpecId has appeared, and is 
set to 42. This of course is mapped to the constantId used in the shader.

We also now have OpSpec* constants, all defaulted to 1 (NOTE: All specialization 
constants have to have a default value in the SPIR-V, which covers the case that a 
user did not set them from Vulkan).

34



At pipeline creation time, we’ve set the workgroup size to 128,16,1.

35



This is what the SPIR-V would look like after the specialization has taken place. This 
happens within the Vulkan driver so you wouldn’t actually see this in Vulkan.

An interesting side note on this – a user could apply a specialization offline if they 
wanted by mimicking this approach. OpSpecConstant’s -> OpConstant’s, 
OpSpecConstantComposite’s -> OpConstantComposite’s, and remove the SpecId
decoration, done!

36



Lastly, how does Vulkan set these values?

We use a single buffer, and an array of mappings into this buffer. These map entries 
map the SpecId value (42 in our case) to an offset into the single buffer of data.

The specialization info is a pointer in the VK_PIPELINE_SHADER struct, and thus can 
be shared between multiple stages (EG. you might have some switch in both the 
vertex and fragment shader you want to fiddle with).

37



Much info was given, I hope enough to satisfy in the short time I had to present.

38



Please do get in touch – SPIR-V is new and there is still plenty of room to mould it 
further if you think we have missed something.

https://www.khronos.org/bugzilla/ in the SPIR-V product is a great place to tell us 
where we could be better.

39


